(资料图)
1、设y/x=t,代入原方程得x^2+(tx)^2-4x+1=0 ==> (1+t^2)x^2-4x+1=0,其判别式不小于0,故(-4)^2-4(1+t^2)>=0 ==> 3-t^2>=0 ==> -根号3 =
2、因此,y/x极大值为"根号3",极小值为"-根号3"。
3、原方程可化为(x-2)^2+y^2=3,即以(2,0)为圆心,半径为根号3的圆,因此y/x的最大值和最小值就是原点与圆相切直线的斜率,画个草图,再用三角函数就容易得到,最大值是根号3,最小值是负根号3。
相信通过已知实数xy满足这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。
本文由用户上传,如有侵权请联系删除!标签: